Abstract

Shifting sand dunes threatened the Baotou-Lanzhou railway being kept on operation smoothly seriously crossing Shapotou on the southeastern edge of the Tengger Desert (China). Artificial vegetation input was employed in Shapotou and a vegetated belt was established for stabilizing the shifting sand dunes. Nematode communities from bare soil between vegetation (ST, STI) and soil under the vegetation (ST-V, STI-V) in the vegetation belt, were investigated. All sites received natural rainfall, of which STI and STI-V received irrigation supplements. Total 43 genera were found in four types of soil samples, and Acrobeles, Acrobeloides, Chiloplacus, Panagrolaimus, Aphelenchoides and Ditylenchus were dominant genera in our study. Nematode abundance per 100 g fresh soil (47–552), the number of taxa identified (8–20), species richness (1.51–3.41), the proportion of plant feeders (0.3%–4.2%) and abundance of all cp groups responded to vegetation. The proportion of omnivores (0.5%–7%), the number of taxa identified, Shannon index (1.26–2.12), species richness, genus dominance (0.18–0.40) and abundance of cp3–5 responded to irrigation supplements. The application of PCA helped to reveal that almost all nematode taxa exhibited a positive loading on the horizontal axis, it implied that nematode abundance was generally higher on sites with planted input. Besides, it showed a vegetation gradient from bare soil between vegetation to soil under vegetation along the first axis, while an irrigation gradient along the second axis. Similarly, classification analysis based on all cased involved indicated that two-main group of nematodes was distinguished by their habitats under vegetation from bare soil. Those results suggested that vegetation input might play a more important role on nematode community composition than irrigation supplements for stabilization of shifting sand dunes. Therefore, nematode community composition could be as an indicator of stabilization of sand dune approaches of plant input with only natural rainfall versus with natural rainfall in combination with irrigation supplements in our system. However, the apparent anhydrobiotic state of the nematode fauna required special consideration in desert system, thus the utilization of the nematodes as an indicator of stabilization of sand dune regimes should be further explored on anhydrobiotic nematodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call