Abstract

Nematic superconductors possess unconventional superconducting order parameters that spontaneously break rotational symmetry of the underlying crystal. In this work we propose a mechanism for nematic superconductivity stabilized by strong density wave fluctuations in two dimensions. While the weak-coupling theory finds the fully gapped chiral state to be energetically stable, we show that strong density wave fluctuations result in an additional contribution to the free energy of a superconductor with multicomponent order parameters, which generally favors nematic superconductivity. Our theory shades light on the recent observation of rotational symmetry breaking in the superconducting state of twisted bilayer graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.