Abstract
Quantum criticality may be essential to understanding a wide range of exotic electronic behavior; however, conclusive evidence of quantum critical fluctuations has been elusive in many materials of current interest. An expected characteristic feature of quantum criticality is power-law behavior of thermodynamic quantities as a function of a nonthermal tuning parameter close to the quantum critical point (QCP). Here, we observed power-law behavior of the critical temperature of the coupled nematic/structural phase transition as a function of uniaxial stress in a representative family of iron-based superconductors, providing direct evidence of quantum critical nematic fluctuations in this material. These quantum critical fluctuations are not confined within a narrow regime around the QCP but rather extend over a wide range of temperatures and compositions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.