Abstract

We propose the creation of artificial nematic-orbit coupling in spin-1 Bose-Einstein condensates, in analogy with spin-orbit coupling. Using a suitably designed microwave chip, the quadratic Zeeman shift, normally uniform in space, can be made to be spatiotemporally varying, leading to a coupling between spatial and nematic degrees of freedom. A phase diagram is explored where three quantum phases with the nematic order emerge: easy axis, easy plane with single-well structure, and easy plane with double-well structure in momentum space. By including spin-dependent and spin-independent interactions, we also obtain the low energy excitation spectra in these three phases. Last, we show that the nematic-orbit coupling leads to a periodic nematic density modulation in relation to the period λ_{T} of the cosinusoidal quadratic Zeeman term. Our results point to the rich possibilities for manipulation of tensorial degrees of freedom in ultracold gases without requiring Raman lasers, and therefore, obviating light-scattering induced heating.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.