Abstract

The proper performance of electro-optical devices utilising liquid crystals (LCs) requires materials with high diffraction efficiency, i.e. with high optical/dielectric anisotropy, low threshold voltage and fast switching. One can achieve increase of dielectric anisotropy by using chemical synthesis or mixing LC materials. However, in most cases, this causes an increase in the threshold voltage and switching times. Therefore obtaining materials with high dielectric anisotropy and keeping threshold voltage and switching times low is a challenging task. We achieved promising results by making binary mixtures of a polar nematic LC 4'-hexyl-4-biphenylcarbonitrile (HBPCN) with low percentage (1–10% by weight) gold nanoparticles. We report that for the mixtures with 1% and 2% gold the dielectric anisotropy increases by 100% and the birefringence by about 50% of their values for pure nematic. We also report that the increase of the dielectric anisotropy in the mixtures only slightly affects threshold voltage and switching times. We propose that this increase is caused by cluster formation in the mixtures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call