Abstract
We study the solution landscape and bifurcation diagrams of nematic liquid crystals confined on a rectangle, using a reduced two-dimensional Landau–de Gennes framework in terms of two geometry-dependent variables: half short edge length and aspect ratio . First, we analytically prove that, for any with a small enough or for a large enough with a fixed domain size, there is a unique stable solution that has two line defects on the opposite short edges. Second, we numerically construct solution landscapes by varying and , and report a novel X state, which emerges from saddle-node bifurcation and serves as the parent state in such a solution landscape. Various new classes are then found among these solution landscapes, including the X class, the S class, and the L class. By tracking the Morse indices of individual solutions, we present bifurcation diagrams for nematic equilibria, thus illustrating the emergence mechanism of critical points and several effects of geometrical anisotropy on confined defect patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.