Abstract
We give a detailed theory of nematic fluctuations in liquid-crystal elastomers (LCEs) and calculate relaxation rates as obtained by dynamic light scattering (DLS). In ideal LCEs, a nematic state is formed by a spontaneous orientational symmetry breaking of an isotropic state, manifesting itself in an existence of a coupled director-shear soft mode (Goldstone mode). The relaxation rate of the soft mode (a pure bend and a pure splay mode) goes to zero in a long-wavelength limit. In a real, nonideal sample with a locked-in anisotropy, on the other hand, the relaxation rates of these modes become finite. Nonideal elastomers are characterized by a plateau in the stress-strain curve, and the soft mode can be detected only upon stretching to the point of elastic instability at which the director starts to rotate. We use the semisoft model of Gaussian elasticity to derive relaxation rates as a function of deformation for different scattering geometries. We show that the bend-mode relaxation rate goes to zero at the threshold strain, so it is the soft mode. The splay mode, on the other hand, is not soft because the relaxation rate is finite at the threshold strain. We provide experimental evidence and compare DLS measurements of splay and bend modes of two side-chain LCE samples differing in crosslinking densities. Results of both samples are in complete agreement with the predictions of the semisoft model, which indicates that director relaxation properties are not influenced much by the crosslinking conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.