Abstract

Anisotropic strain is an external field capable of selectively addressing the role of nematic fluctuations in promoting superconductivity. We demonstrate this using polarization-resolved elasto-Raman scattering by probing the evolution of nematic fluctuations under strain in the normal and superconducting state of the paradigmatic iron-based superconductor Ba(Fe_{1-x}Co_{x})_{2}As_{2}. In the parent compound BaFe_{2}As_{2} we observe a strain-induced suppression of the nematic susceptibility which follows the expected behavior of an Ising order parameter under a symmetry breaking field. For the superconducting compound, the suppression of the nematic susceptibility correlates with the decrease of the critical temperature T_{c}, indicating a significant contribution of nematic fluctuations to electron pairing. Our results validate theoretical scenarios of enhanced T_{c} near a nematic quantum critical point.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call