Abstract

Classic experiments show that polybutadiene oligomers align in a network of stretched chains. Furthermore, the oligomers orient almost as strongly as the network, which suggests a large nematic coupling, despite polybutadiene being a flexible polymer. Here, we combine self-consistent field theory (SCFT) and atomistic molecular dynamics (MD) simulations of polymer chains under tension to obtain the nematic coupling constant α in polybutadiene. Using α, we compute the ratio of orientation of free chains and stretched chains of polybutadiene in a melt of stretched chains. We show that nematic coupling in polybutadiene, though not quite enough to induce a nematic phase, is surprisingly strong. When extrapolated to the experimental temperature, we find an orientation ratio of 0.8, consistent with the experimental value of 0.9.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.