Abstract

Assembly of colloidal particles in nematic liquid crystals is governed by the symmetry of building blocks and type of defects in the liquid crystalline orientation. Particles in a nematic act as nucleation sites for topological defect structures that are homotopic to point defects. The tendency for a minimal deformation free energy and topological constraints limit possible defect configurations to extended and localized defect loops. Here we report on a recently discovered colloidal binding, where particles are entangled by disclination loops. Nematic braids formed by such disclinations stabilize multi-particle objects and entrap particles in a complex manner. Observed binding potentials are highly anisotropic showing string-like behavior and can be of an order of magnitude stronger compared to non-entangled colloids. Controlling the assembly based on entangled disclination lines one can build multi-particle structures with potentially useful features (shapes, periodic structure, chirality, etc.) for photonic and plasmonic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.