Abstract
Hypoxia affects the distribution of pelagic nekton (i.e., fish and large invertebrates) in both marine and freshwater systems. Bottom hypoxia is common, but midwater oxygen minimum layers (OMLs) also develop in marine offshore regions, fjords, and freshwater lakes. Studies of nekton responses to OML in marine ecosystems have primarily occurred in deep, offshore regions with thick, persistent OMLs. Our study examined the response of pelagic nekton to an OML in a shallow temperate fjord, Hood Canal, WA, U.S.A. Using acoustics, we quantified vertical distribution of nekton at two sites (Hoodsport and Duckabush) before (July) and after (September) OML development. Both Hoodsport and Duckabush had strong OML between 10 and 35 m in September, with lower (minimum 0.63 mg L −1) oxygen levels at Hoodsport compared to Duckabush (1.58 mg L −1). The OML did not affect daytime distribution of fish or invertebrates, with both occupying depths >60 m. At night in July, with no OML, invertebrates migrated into waters <20 m and fish dispersed to within 15 m of the surface at both sites. In the presence of the September OML, invertebrates migrated into waters <20 m, but the upper limit of fish vertical distribution stopped at the base of the OML (35 m) at Hoodsport. Fish vertical distribution at Duckabush was less pronounced within and above the OML (10–35 m) than it had been in July. Our results suggest that the OML did not affect invertebrate vertical distribution, but did affect fish vertical migration, and may provide a seasonal, diel prey refuge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.