Abstract

5-azacytidine (5-Aza) is a potent inducer of fetal hemoglobin (HbF) in people with beta-thalassemia and sickle cell disease. Two models have been proposed to explain this activity. The first is based on the drug's ability to inhibit global DNA methylation, including the fetal globin genes, resulting in their activation. The second is based on 5-Aza's cytotoxicity and observations that HbF production is enhanced during marrow recovery. We tested these models using human primary cells in an in vitro erythroid differentiation system. We found that doses of 5-Aza that produce near maximal induction of gamma-globin mRNA and HbF do not alter cell growth, differentiation kinetics, or cell cycle, but do cause a localized demethylation of the gamma promoter. However, when we reduced gamma promoter methylation to levels equivalent to those seen with 5-Aza or to the lower levels seen in primary fetal erythroid cells using DNMT1 siRNA and shRNA, we observed no induction of gamma-globin mRNA or HbF. These results suggest that 5-Aza induction of HbF is not the result of global DNA demethylation or of changes in differentiation kinetics, but involves an alternative, previously unrecognized mechanism. Other results suggest that posttranscriptional regulation plays an important role in the 5-Aza response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.