Abstract

Four Gram-stain-negative, oxidase-positive, non-motile, cocci-shaped bacteria strains (ZJ106T, ZJ104, ZJ785T and ZJ930) were isolated from marmot respiratory tracts. Phylogenetic analyses based on 16S rRNA genes, 53 ribosomal protein sequences and 441 core genes supported that all four strains belonged to the genus Neisseria with close relatives Neisseria weixii 10022T and Neisseria iguanae ATCC 51483T. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values were below the species-level thresholds (95-96 % for ANI, and 70 % for dDDH). The major fatty acids of all four strains were C16 : 1 ω7c /C16 : 1 ω6c, C16 : 0 and C18 : 1 ω9c. Major polar lipids were composed of diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. MK-8 was the major menaquinone. Based on Virulence Factor Database analysis, the four strains were found to contain NspA and PorB H-factor binding proteins that promote evasion of host immunity. Strains ZJ106T and ZJ104 contained structures similar to the capsule synthesis manipulator of Neisseria meningitidis. Based on phenotypic and phylogenetic evidence, we propose that strains ZJ106T and ZJ785T represent two novel species of the genus Neisseria, respectively, with the names Neisseria lisongii sp. nov. and Neisseria yangbaofengii sp. nov. The type strains are ZJ106T (=GDMCC 1.3111T=JCM 35323T) and ZJ785T (=GDMCC 1.1998T=KCTC 82336T).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call