Abstract

Neisseria gonorrhoeae releases peptidoglycan fragments during growth, and these molecules induce an inflammatory response in the human host. The proinflammatory molecules include peptidoglycan monomers, peptidoglycan dimers, and free peptides. These molecules can be released by the actions of lytic transglycosylases or an amidase. However, >40% of the gonococcal cell wall is cross-linked, where the peptide stem on one peptidoglycan strand is linked to the peptide stem on a neighboring strand, suggesting that endopeptidases may be required for the release of many peptidoglycan fragments. Therefore, we characterized mutants with individual or combined mutations in genes for the low-molecular-mass penicillin-binding proteins PBP3 and PBP4. Mutations in either dacB, encoding PBP3, or pbpG, encoding PBP4, did not significantly reduce the release of peptidoglycan monomers or free peptides. A mutation in dacB caused the appearance of a larger-sized peptidoglycan monomer, the pentapeptide monomer, and an increased release of peptidoglycan dimers, suggesting the involvement of this enzyme in both the removal of C-terminal d-Ala residues from stem peptides and the cleavage of cross-linked peptidoglycan. Mutation of both dacB and pbpG eliminated the release of tripeptide-containing peptidoglycan fragments concomitantly with the appearance of pentapeptide and dipeptide peptidoglycan fragments and higher-molecular-weight peptidoglycan dimers. In accord with the loss of tripeptide peptidoglycan fragments, the level of human NOD1 activation by the dacB pbpG mutants was significantly lower than that by the wild type. We conclude that PBP3 and PBP4 overlap in function for cross-link cleavage and that these endopeptidases act in the normal release of peptidoglycan fragments during growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call