Abstract

Many pathogens use homologous recombination to vary surface antigens to avoid immune surveillance. Neisseria gonorrhoeae achieves this in part by changing the properties of its surface pili in a process called pilin antigenic variation (AV). Pilin AV occurs by high-frequency gene conversion reactions that transfer silent pilS sequences into the expressed pilE locus and requires the formation of an upstream guanine quartet (G4) DNA structure to initiate this process. The MutS and MutL proteins of the mismatch correction (MMC) system act to correct mismatches after replication and prevent homeologous (i.e., partially homologous) recombination, but MutS orthologs can also bind to G4 structures. A previous study showed that mutation of MutS resulted in a 3-fold increase in pilin AV, which could be due to the loss of MutS antirecombination properties or loss of G4 binding. We tested two site-directed separation-of-function MutS mutants that are both predicted to bind to G4s but are not able to perform MMC. Pilus phase variation assays and DNA sequence analysis of pilE variants produced in these mutants showed that all three mutS mutants and a mutL mutant had similar increased frequencies of pilin AV. Moreover, the mutS mutants all showed similar increased levels of pilin AV-dependent synthetic lethality. These results show that antirecombination by MMC is the reason for the effect that MutS has on pilin AV and is not due to pilE G4 binding by MutS. Neisseria gonorrhoeae continually changes its outer surface proteins to avoid recognition by the immune system. N. gonorrhoeae alters the antigenicity of the pilus by directed recombination between partially homologous pilin copies in a process that requires a guanine quartet (G4) structure. The MutS protein of the mismatch correction (MMC) system prevents recombination between partially homologous sequences and can also bind to G4s. We confirmed that loss of MMC increases the frequency of pilin antigenic variation and that two MutS mutants that are predicted to separate the two different functions of MutS inhibit pilin variation similarly to a complete-loss-of-function mutant, suggesting that interaction of MutS with the G4 structure is not a major factor in this process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call