Abstract
We analyse the dynamics of a discrete system coming from an intraguild food web model by using the average method. The intraguild predation model is formed by three populations corresponding to prey (P), mesopredator (MP) and superpredator (SP), where these last two populations are specialist. We give sufficient condition to guarantee the existence of a coexistence point at which the intraguild predation discrete model undergoes a Neimark–Sacker bifurcation independently of the functional responses that govern the interactions. We show numerical applications that consist in to assume that P has logistic growth and that the relation of MP–P is through a Holling type II functional response. Besides, we will consider that the interaction of MP–P is such that population MP has defense. The interaction of SP–P will be through a Holling functional response type III or IV. In particular, we give sufficient conditions to guarantee that the three species coexist. The techniques used to obtain the results can be applied to other models with different functional responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.