Abstract

We investigate some non-normal variants of well-studied paraconsistent and paracomplete modal logics that are based on N. Belnap’s and M. Dunn’s four-valued logic. Our basic non-normal modal logics are characterized by a weak extensionality rule, which reflects the four-valued nature of underlying logics. Aside from introducing our basic framework of bi-neighbourhood semantics, we develop a correspondence theory in order to prove completeness results with respect to our neighbourhood semantics for non-normal variants of $$\mathsf {BK}$$ , $$\mathsf {BK^{FS}}$$ and $$\mathsf {MBL}$$ .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.