Abstract

Short rotation coppices (SRCs) represent an important source of biomass. Since they are grown in various mixtures, SRCs represent an excellent opportunity for assessing the effects of local plant neighbourhoods on their performance. We used a common garden experiment consisting of plots that varied in genotype diversity of SRC willows to test for the effects of chemical traits of individual plants and chemical variation in the plots where they grew on insect herbivory. We also explored whether the composition of willows planted in a plot affected their chemistry. To do this, we performed untargeted metabolomics and quantified various chemical traits related to the total set of metabolites we detected, flavonoids, and salicinoids in four willow genotypes. We measured the leaf herbivory that the plants suffered. The genotypes differed in most chemical traits, yet we found only limited effects of individual traits on herbivory damage. Instead, herbivory damage was positively correlated with structural variation in salicinoids in a plot. When analysing the effects of plot chemical variation on herbivory damage separately for each genotype, we found both positive and negative correlations between the two, suggesting both associational resistance and susceptibility. Finally, we also observed a significant effect of the interaction between genotype and plot composition on structural variation in plant chemistry. Overall, our results suggest that high chemical variation in mixed willow SRCs does not necessarily lower the herbivory damage, possibly due to spillover effects of insect herbivores among genotypes. Our results also show that different genotypes respond differently to plot composition in terms of herbivory damage and chemical composition, which may affect their suitability for growing in mixed stands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.