Abstract

ZrZnOx is active in catalyzing carbon dioxide (CO2) hydrogenation to methanol (MeOH) via a synergy between ZnOx and ZrOx. Here we report the construction of Zn2+-O-Zr4+ sites in a metal-organic framework (MOF) to reveal insights into the structural requirement for MeOH production. The Zn2+-O-Zr4+ sites are obtained by postsynthetic treatment of Zr6(μ3-O)4(μ3-OH)4 nodes of MOF-808 by ZnEt2 and a mild thermal treatment to remove capping ligands and afford exposed metal sites for catalysis. The resultant MOF-808-Zn catalyst exhibits >99% MeOH selectivity in CO2 hydrogenation at 250 °C and a high space-time yield of up to 190.7 mgMeOH gZn-1 h-1. The catalytic activity is stable for at least 100 h. X-ray absorption spectroscopy (XAS) analyses indicate the presence of Zn2+-O-Zr4+ centers instead of ZnmOn clusters. Temperature-programmed desorption (TPD) of hydrogen and H/D exchange tests show the activation of H2 by Zn2+ centers. Open Zr4+ sites are also critical, as Zn2+ centers supported on Zr-based nodes of other MOFs without open Zr4+ sites fail to produce MeOH. TPD of CO2 reveals the importance of bicarbonate decomposition under reaction conditions in generating open Zr4+ sites for CO2 activation. The well-defined local structures of metal-oxo nodes in MOFs provide a unique opportunity to elucidate structural details of bifunctional catalytic centers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.