Abstract
Few ash trees (Fraxinus spp.) have survived the initial devastation that emerald ash borer beetle (EAB) (Agrilus planipennis) has caused in natural populations. We studied green ash (Fraxinus pennsylvanica) trees in a floodplain population after >90% of ash had died from EAB infestation. We examined the relationship among the canopy health classes of surviving ash trees and their nearest neighboring trees (within 6 m) and available soil nutrients. A subset of focal ash trees was randomly selected within health classes ranging from healthy to recently deceased. Focal trees with the healthiest canopy class had significantly fewer ash neighbors compared to declining health classes. Other species of tree neighbors did not have a significant impact on surviving ash tree canopy health. Nutrients in soils immediately surrounding focal trees were compared among health classes. Samples from treeless areas were also used for comparison. There was a significantly greater amount of sulfur (ppm) and phosphorus (mg/kg) in ash tree soil compared to treeless area soil. The relationships between these soil nutrient differences may be from nutrient effects on trees, tree effects on nutrients, or microsite variation in flooded areas. Our data do not directly assess whether these ash trees with healthier canopies have increased resistance to EAB but do indicate that at neighborhood scales in EAB aftermath forests, the surviving ash trees have healthier canopies when separated at least 6 m from other ash trees. This research highlights scale-dependent neighborhood composition drivers of tree susceptibility to pests and suggests that drivers during initial infestation differ from drivers in aftermath forests.
Highlights
The impacts of the loss of tree species to forest pests and diseases highlight the need to understand the drivers of tree susceptibility to these threats
The highest number of neighbors any one ash tree had in the 6-m radius was seven trees
These results suggest that specific tree neighborhood composition in an emerald ash borer beetle (EAB) aftermath forest may drive ash tree susceptibility to pests
Summary
The impacts of the loss of tree species to forest pests and diseases highlight the need to understand the drivers of tree susceptibility to these threats. Two potential drivers of tree susceptibility to pests and diseases are tree neighborhood composition and soil nutrient availability. Tree neighborhood composition is influenced by tree interactions, such as competition, facilitation, and spread of pests and diseases. Plant composition is hypothesized to be based on a tradeoff between plants competing at high quality soil nutrient sites and tolerating poor quality soil nutrient sites [1]. Tree composition can change rapidly with the introduction or increase in tree pests and diseases. Insects that differ in their biology may exhibit different relationships with the density of their host. Some insects have greater impacts on host trees when host density is high, a phenomenon called the Resource Concentration
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.