Abstract

In this paper a robust feedback algorithm is presented for a near-minimum-fuel ascent of a generic two-stage launch vehicle operating in the equatorial plane. The development of the algorithm is based on the ideas of neighboring optimal control and can be divided into three phases. In phase 1 the formalism of optimal control is employed to calculate fuel-optimal ascent trajectories for a simple point-mass model. In phase 2 these trajectories are used to numerically calculate gain functions of time for the control(s), for the total flight time, and possibly for other variables of interest. In phase 3 these gains are used to determine feedback expressions for the controls associated with a more realistic model of a launch vehicle. With the advanced launch system in mind, all calculations in this paper are performed on a two-stage vehicle with fixed thrust history, but this restriction is by no means important for the approach taken. Performance and robustness of the algorithm is found to be excellent. cg ycg *TB yxB JCTC

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call