Abstract

The convex nonnegative matrix factorization (CNMF) is a variation of nonnegative matrix factorization (NMF) in which each cluster is expressed by a linear combination of the data points and each data point is represented by a linear combination of the cluster centers. When there exists nonlinearity in the manifold structure, both NMF and CNMF are incapable of characterizing the geometric structure of the data. This paper introduces a neighborhood preserving convex nonnegative matrix factorization (NPCNMF), which imposes an additional constraint on CNMF that each data point can be represented as a linear combination of its neighbors. Thus our method is able to reap the benefits of both nonnegative data factorization and the purpose of manifold structure. An efficient multiplicative updating procedure is produced, and its convergence is guaranteed theoretically. The feasibility and effectiveness of NPCNMF are verified on several standard data sets with promising results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.