Abstract

The authors present test algorithms for go/no-go and diagnostic test of memories, covering neighborhood pattern-sensitive faults (NPSFs). The proposed test algorithms are March based, which have linear time complexity and result in a simple built-in self-test (BIST) implementation. Although conventional March algorithms do not generate all neighborhood patterns to test the NPSFs, they can be modified by using multiple data backgrounds such that all neighborhood patterns can be generated. The proposed multibackground March algorithms have shorter test lengths than previously reported ones, and the diagnostic test algorithm guarantees 100% diagnostic resolution for NPSFs and conventional RAM faults. Based on the proposed algorithms, the authors also present a cost-effective BIST design. The BIST circuit is programmable, and it supports March algorithms, including the proposed multibackground one.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.