Abstract
Abstract Hypergraph, as a generalization of the notions of graph and simplicial complex, has gained a lot of attention in many fields. It is a relatively new mathematical model to describe the high-dimensional structure and geometric shapes of data sets. In this paper,we introduce the neighborhood hypergraph model for graphs and combine the neighborhood hypergraph model with the persistent (embedded) homology of hypergraphs. Given a graph,we can obtain a neighborhood complex introduced by L. Lovász and a filtration of hypergraphs parameterized by aweight function on the power set of the vertex set of the graph. Theweight function can be obtained by the construction fromthe geometric structure of graphs or theweights on the vertices of the graph. We show the persistent theory of such filtrations of hypergraphs. One typical application of the persistent neighborhood hypergraph is to distinguish the planar square structure of cisplatin and transplatin. Another application of persistent neighborhood hypergraph is to describe the structure of small fullerenes such as C20. The bond length and the number of adjacent carbon atoms of a carbon atom can be derived from the persistence diagram. Moreover, our method gives a highly matched stability prediction (with a correlation coefficient 0.9976) of small fullerene molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Computational and Mathematical Biophysics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.