Abstract

BackgroundStroke and myocardial infarction (MI) are serious public health burdens in the US. These burdens vary by geographic location with the highest mortality risks reported in the southeastern US. While these disparities have been investigated at state and county levels, little is known regarding disparities in risk at lower levels of geography, such as neighborhoods. Therefore, the objective of this study was to investigate spatial patterns of stroke and MI mortality risks in the East Tennessee Appalachian Region so as to identify neighborhoods with the highest risks.MethodsStroke and MI mortality data for the period 1999-2007, obtained free of charge upon request from the Tennessee Department of Health, were aggregated to the census tract (neighborhood) level. Mortality risks were age-standardized by the direct method. To adjust for spatial autocorrelation, population heterogeneity, and variance instability, standardized risks were smoothed using Spatial Empirical Bayesian technique. Spatial clusters of high risks were identified using spatial scan statistics, with a discrete Poisson model adjusted for age and using a 5% scanning window. Significance testing was performed using 999 Monte Carlo permutations. Logistic models were used to investigate neighborhood level socioeconomic and demographic predictors of the identified spatial clusters.ResultsThere were 3,824 stroke deaths and 5,018 MI deaths. Neighborhoods with significantly high mortality risks were identified. Annual stroke mortality risks ranged from 0 to 182 per 100,000 population (median: 55.6), while annual MI mortality risks ranged from 0 to 243 per 100,000 population (median: 65.5). Stroke and MI mortality risks exceeded the state risks of 67.5 and 85.5 in 28% and 32% of the neighborhoods, respectively. Six and ten significant (p < 0.001) spatial clusters of high risk of stroke and MI mortality were identified, respectively. Neighborhoods belonging to high risk clusters of stroke and MI mortality tended to have high proportions of the population with low education attainment.ConclusionsThese methods for identifying disparities in mortality risks across neighborhoods are useful for identifying high risk communities and for guiding population health programs aimed at addressing health disparities and improving population health.

Highlights

  • Stroke and myocardial infarction (MI) are serious public health burdens in the US

  • Geographic disparities have been shown to exist even after adjusting for variations in common risk factors like demographic factors, socioeconomic measures, behaviors, and other conditions [4,10,11,13]. These findings suggest that geographic variation in stroke and MI mortality could be due to more localized distributions of neighborhood risk factors

  • Roof top, address matches were obtained for 67% of the data, while 30% were range interpolated between two points on the street and 3% were matched to the zipcode

Read more

Summary

Introduction

Stroke and myocardial infarction (MI) are serious public health burdens in the US. These burdens vary by geographic location with the highest mortality risks reported in the southeastern US. Tennessee ranks 3rd highest in the US for stroke [1], and had an annual age-adjusted stroke mortality risk for the period 2000-2006 of 67.5 deaths per 100,000 persons compared to the national risk of 53.5 deaths per 100,000 persons [12]. For coronary heart disease including MI, Tennessee ranks 4th highest in the US [1] with an annual age-adjusted mortality risk for the period 2000-2006 of 85.5 deaths per 100,000 persons compared to the national risk of 58.9 death per 100,000 persons [12]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.