Abstract

The neighbor network in a two-dimensional polydisperse hard-disk fluid with diameter distribution p(sigma) approximately sigma(-4) is examined using constant-pressure Monte Carlo simulations. Graphs are constructed from vertices (disks) with edges (links) connecting each vertex to k neighboring vertices defined by a radical tessellation. At packing fractions in the range 0.24< or =eta< or =0.36, the decay of the network degree distribution is observed to be consistent with the power law k(-gamma) where the exponent lies in the range 5.6< or =gamma< or =6.0 . Comparisons with the predictions of a maximum-entropy theory suggest that this apparent power-law behavior is not the asymptotic one and that p(k) approximately k(-4) in the limit k-->infinity. This is consistent with the simple idea that for large disks, the number of neighbors is proportional to the disk diameter. A power-law decay of the network degree distribution is one of the characteristics of a scale-free network. The assortativity of the network is measured and is found to be positive, meaning that vertices of equal degree are connected more often than in a random network. Finally, the equation of state is determined and compared with the prediction from a scaled-particle theory. Very good agreement between simulation and theory is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.