Abstract

We present an extension of the Exploratory Observation Machine (XOM) for structure-preserving dimensionality reduction. Based on minimizing the Kullback–Leibler divergence of neighborhood functions in data and image spaces, this Neighbor Embedding XOM (NE-XOM) creates a link between fast sequential online learning known from topology-preserving mappings and principled direct divergence optimization approaches. We quantitatively evaluate our method on real-world data using multiple embedding quality measures. In this comparison, NE-XOM performs as a competitive trade-off between high embedding quality and low computational expense, which motivates its further use in real-world settings throughout science and engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call