Abstract
Behavioral science researchers are often interested in whether there is negligible interaction among continuous predictors of an outcome variable. For example, a researcher might be interested in demonstrating that the effect of perfectionism on depression is very consistent across age. In this case, the researcher is interested in assessing whether the interaction between the predictors is too small to be meaningful. Unfortunately, most researchers address the above research question using a traditional association-based null hypothesis test (e.g. regression) where their goal is to fail to reject the null hypothesis of no interaction. Common problems with traditional tests are their sensitivity to sample size and their opposite (and hence inappropriate) hypothesis setup for finding a negligible interaction effect. In this study, we investigated a method for testing for negligible interaction between continuous predictors using unstandardized and standardized regression-based models and equivalence testing. A Monte Carlo study provides evidence for the effectiveness of the equivalence-based test relative to traditional approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.