Abstract

We show that the polariton density of states in planar optical cavities strongly coupled to vibrational excitations remains much lower than the density of vibrational states even at the frequency of the lower and upper polaritons under most practical circumstances. The polariton density of states is higher within a narrow window only when the inhomogeneous line width is at least an order of magnitude smaller than the Rabi splitting. Therefore, modification of reaction rates via the density-of-states pathway appears small or negligible for the scenarios reported in the literature. While the polariton density of states is bounded from above by the free-space optical density of states in dielectric cavities, it can be much higher for localized phonon polariton modes of nanoscale particles. We conclude that other potential explanations of the reported reactivity changes under vibrational strong coupling should be examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.