Abstract

The partial transpose $\rho_A^{T_2}$ of the reduced density matrix $\rho_A$ is the key object to quantify the entanglement in mixed states, in particular through the presence of negative eigenvalues in its spectrum. Here we derive analytically the distribution of the eigenvalues of $\rho_A^{T_2}$, that we dub negativity spectrum, in the ground sate of gapless one-dimensional systems described by a Conformal Field Theory (CFT), focusing on the case of two adjacent intervals. We show that the negativity spectrum is universal and depends only on the central charge of the CFT, similarly to the entanglement spectrum. The precise form of the negativity spectrum depends on whether the two intervals are in a pure or mixed state, and in both cases, a dependence on the sign of the eigenvalues is found. This dependence is weak for bulk eigenvalues, whereas it is strong at the spectrum edges. We also investigate the scaling of the smallest (negative) and largest (positive) eigenvalues of $\rho_A^{T_2}$. We check our results against DMRG simulations for the critical Ising and Heisenberg chains, and against exact results for the harmonic chain, finding good agreement for the spectrum, but showing that the smallest eigenvalue is affected by very large scaling corrections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.