Abstract
Strongly negatively invariant compact sets of set-valued autonomous and nonautonomous dynamical systems on a complete metric space, the latter formulated in terms of processes, are shown to contain a weakly positively invariant family and hence entire solutions. For completeness the strongly positively invariant case is also considered, where the obtained invariant family is strongly invariant. Both discrete and continuous time systems are treated. In the nonautonomous case, the various types of invariant families are in fact composed of subsets of the state space that are mapped onto each other by the set-valued process. A simple example shows the usefulness of the result for showing the occurrence of a bifurcation in a set-valued dynamical system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.