Abstract

Rieske proteins carry a redox-active iron-sulfur cluster, which is bound by two histidine and two cysteine side chains. The reduction potential of Rieske proteins depends on pH. This pH dependence can be described by two pK(a) values, which have been assigned to the two iron-coordinating histidines. Rieske proteins are commonly grouped into two major classes: Rieske proteins from quinol-oxidizing cytochrome bc complexes, in which the ligand histidines titrate in the physiological pH range, and bacterial ferredoxin Rieske proteins, in which the ligand histidines are protonated at physiological pH. In the study presented here, we have calculated pK(a) values of the cluster ligand histidines using a combined density functional theory/continuum electrostatics approach. Experimental pK(a) values for a bc-type and a ferredoxin Rieske protein could be reproduced. We could identify functionally important differences between the two proteins: hydrogen bonds toward the cluster, which are present in bc-type Rieske proteins, and negatively charged residues, which are present in ferredoxin Rieske proteins. We removed these differences by mutating the proteins in our calculations. The Rieske centers in the mutated proteins have very similar pK(a) values. We thus conclude that the studied structural differences are the main reason for the different pH-titration behavior of the proteins. Interestingly, the shift caused by neutralizing the negative charges in ferredoxin Rieske proteins is larger than the shift caused by removing the hydrogen bonds toward the cluster in bc-type Rieske proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.