Abstract

Dissolving CO 2 into water or brine produces a denser fluid than the CO 2 -free equivalent at all salinity, temperature and pressure conditions relevant to sedimentary basins. Negative buoyancy of CO 2 solutions opens the possibility of utilizing negative-relief trapping configurations for CO 2 sequestration, as opposed to structural highs conventionally sought for positively buoyant fluids, such as hydrocarbons or pure CO 2 . Exploring sedimentary basins for negative buoyancy traps can readily utilize hydrocarbon exploration datasets and techniques. Some major systemic differences when exploring for negative as opposed to positive buoyancy traps are examined here. Trap spatial scale is a consideration due to the inherent long-wavelength synformal geometry of basins. Antiforms are areally restricted relative to synforms, which may be embedded within larger-scale synformal closure at length scales right up to that of the basin itself. Multiscale synformal structures vary with basin type and may not be fully identified due to truncation effects arising from data-coverage limitations. Similar to hydrocarbon exploration, CO 2 trap exploration must consider potential sequestration volumes in an uncertainty and risk framework. Charge risk is unnecessary in sequestration projects; however, the multiscale nature of synformal traps should be considered when estimating the range of storage volumes. Thematic collection: This article is part of the Geoscience for CO 2 storage collection available at: https://www.lyellcollection.org/cc/geoscience-for-co2-storage

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.