Abstract

Type 1 (Galβ1-3GlcNAc) and type 2 (Galβ1-4GlcNAc) sequences are constituents of the backbones of a large family of glycans of glycoproteins and glycolipids whose branching and peripheral substitutions are developmentally regulated. It is highly desirable to have microsequencing methods that can be used to precisely identify and monitor these oligosaccharide sequences with high sensitivity. Negative-ion electrospray tandem mass spectrometry with collision-induced dissociation has been used for characterization of branching points, peripheral substitutions, and partial assignment of linkages in reducing oligosaccharides. We now extend this method to characterizing entire sequences of linear type 1 and type 2 chain-based glycans, focusing on the type 1 and type 2 units in the internal regions including the linkages connecting type 1 and type 2 disaccharide units. We apply the principles to sequence analysis of closely related isomeric oligosaccharides and demonstrate by microarray analyses distinct binding activities of antibodies and a lectin toward various combinations of type 1 and 2 units joined by 1,3- and 1,6-linkages. These sequence-specific carbohydrate-binding proteins are in turn valuable tools for detecting and distinguishing the type 1 and type 2-based developmentally regulated glycan sequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.