Abstract

Cold emission properties of carbon nanodots (CNDs) evaluated using ANSYS Maxwell software are predicted to be size-dependent and then verified experimentally. In order to correlate the electron emission properties with the size of CNDs, the work function values were determined using ultraviolet photoelectron spectroscopy. This is the first report on theoretical calculations based on density functional theory and experimental results that confirm the work function dependency on the charge state of the functional group attached on the particle surface. The smallest CND (2.5 nm) has the highest percentage of negatively charged groups as well as the lowest work function (5.18 eV). The smallest dimension with the lowest work function assures that this sample is the best suited for field emission. It shows excellent field emission properties with a high current density of ∼1.45 mA cm−2 at 2 V μm−1 electric field, turn-on field as low as 0.04 V μm−1, very high field enhancement factor of 2.7 × 105 and high stability. Overall, the zero-dimensional CNDs showed superior field emission activity as compared to the higher dimensional carbon nanomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.