Abstract

According to the laws of thermodynamics, materials normally exhibit contraction or expansion along the directions of the applied pressure or tension. Here, we show that a man-made cocrystal of a metallofullerene and highly energetic cubane, with strained sp3 bonding, may exhibit an anomalous negative volume compressibility. In this cocrystal, the freely rotating fullerene Sc3N@C80 acts as a structural building block while static cubane molecules fill the lattice interstitial sites. Under high pressure, Sc3N@C80 keeps stable and preserves the crystalline framework of the materials, while the cubane undergoes a progressive configurational transformation above 6.5 GPa, probably promoted by charge transfer from fullerene to cubane. A further configurational change of the cubane into a low-density configuration at higher pressure results in an anomalous pressure-driven lattice expansion of the cocrystal (∼1.8% volume expansion). Such unusual negative compressibility has previously only been predicted by theory and suggested to appear in mechanical metamaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call