Abstract

Temperature dependence of electrical conductivity/resistivity of CNT networks (dry or impregnated), which is characterised by a temperature coefficient of resistance (TCR), is experimentally observed to be negative, especially for the case of aligned CNT (A-CNT). The paper investigates the role of three phenomena defining the TCR, temperature dependence of the intrinsic conductivity of CNTs, of the tunnelling resistance of their contacts, and thermal expansion of the network, in the temperature range 300-400 K. A-CNT films, created by rolling down A-CNT forests of different length and described in Lee et al., Appl Phys Lett, 2015, 106: 053110, are investigated as an example. The modelling of the electrical conductivity is performed by the nodal analysis of resistance networks, coupled with the finite-element thermomechanical modelling of network thermal expansion. The calculated TCR for the film is about -0.002 1/K and is close to the experimentally observed values. Comparative analysis of the influence of the TCR defining phenomena is performed on the case of dry and impregnated films. The analysis shows that in both cases, for an A-CNT film at the studied temperature interval, the main factor affecting a network's TCR is the TCR of the CNTs themselves. The TCR of the tunnelling contacts plays the secondary role; influence of the film thermal expansion is marginal. The prevailing impact of the intrinsic conductivity TCR on the TCR of the film is explained by long inter-contact segments of CNTs in an A-CNT network, which define the homogenised film conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.