Abstract
Negative streamwise velocities, extreme wall-normal velocites and high flatness values for the wall-normal fluctuations near the wall are investigated for turbulent channel flow simulations at a series of Reynolds numbers up to Reτ = 1000 in this paper. Probability density functions of the wall-shear stress and velocity components are presented, as well as joint probability density functions of the velocity components and the pressure. Backflow occurs more often (0.06% at Reτ = 1000) and further away from the wall into the buffer layer for rising Reynolds number. An oblique vortex outside the viscous sublayer is found to cause this backflow. Extreme v events occur also more often for rising Reynolds number. Positive and negative velocity spikes appear in pairs, located on the two edges of a strong streamwise vortex: the negative spike occurring in a high speed streak indicating a sweeping motion, while the positive spike is located between a high and low speed streak. These extreme v events cause high flatness values near the wall (F(v) = 43 at Reτ = 1000).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.