Abstract

A major concern of the power quality in distributed systems is related to the mitigation of voltage imbalances. This function can be implemented directly in the control system of the distributed generation power converters working simultaneously with the standard operation modes. This study presents a negative-sequence voltage elimination technique for distributed generators in grid-feeding operation mode. The proposal guarantees a complete elimination of the negative-sequence voltage, while operating without a priori in-depth knowledge of the grid configuration and its characteristics. The proposed control architecture is presented together with its pseudocode, a controller flowchart and a discussion of the implementation aspects. A closed-loop modelling is derived based on a complex transfer function approach, which is used to determine stability margins and control design guidelines. A laboratory setup was implemented to verify the performance of the proposed strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call