Abstract

We have examined enzyme activities and mRNA levels corresponding to aldehyde dehydrogenase-3 genes encoding cytosolic (ALDH3c) and microsomal (ALDH3m) forms. In contrast to negligible activities in the intact mouse liver, both ALDH3c and ALDH3m enzyme activities are inducible by benzo[a]pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mouse hepatoma Hepa-1c1c7 cell cultures. Constitutive mRNA levels of ALDH3c are virtually absent, whereas those of ALDH3m are substantial; using Hepa-1 mutant lines, we show that both ALDH3c and ALDH3m are TCDD-inducible by an Ah receptor-dependent mechanism. Basal mRNA levels of ALDH3c, but not those of ALDH3m, are strikingly elevated in untreated mutant cells lacking a functional CYP1A1 enzyme; low ALDH3c basal mRNA levels can be restored by introduction of a functional murine CYP1A1 or human CYP1A2 enzyme into these mutant cells. These data suggest that the TCDD induction process is distinct from the CYP1A1/CYP1A2 metabolism-dependent repression of constitutive gene expression; we suggest that this latter property classifies the Aldh-3c gene, but not the Aldh-3m gene, as a member of the murine [Ah] battery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call