Abstract

Type II restriction-modification systems are expected to possess mechanisms for tight regulation of their expression to suppress the potential of lethal attack on their host bacteria when they establish and maintain themselves within them. Although the EcoRI restriction enzyme has been well characterized, regulation of its expression is still poorly understood. In this study, mutational analysis with lacZ gene fusion and primer extension assay identified a promoter for the transcription of the ecoRIR gene. Further analyses revealed that an intragenic region containing two overlapping reverse promoter-like elements acted as a negative regulator for ecoRIR gene expression. The activity of these putative reverse promoters was verified by transcriptional gene fusion, primer extension and in vitro transcription. Mutations in these reverse promoters resulted in increased gene expression in both translational and transcriptional gene fusions. An RNase protection assay revealed that the transcript level of the wild type relative to that of the reverse promoter mutant at the downstream regions was much lower than the level at the upstream regions. This suggests that these reverse promoter-like elements affect their downstream transcript level. The possible mechanisms of this kind of negative regulation, in addition to their possible biological roles, are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call