Abstract

In spite of the push to identify modifiers of BRCAness, it still remains unclear how tumor suppressor BRCA1 is lost in breast cancers in the absence of genetic or epigenetic aberrations. Mounting evidence indicates that the transforming acidic coiled-coil 3 (TACC3) plays an important role in the centrosome-microtubule network during mitosis and gene expression, and that deregulation of TACC3 is associated with breast cancer. However, the molecular mechanisms by which TACC3 contributes to breast cancer development have yet to be elucidated. Herein, we found that high levels of TACC3 in human mammary epithelial cells can cause genomic instability possibly in part through destabilizing BRCA1. We also found that high levels of TACC3 inhibited the interaction between BRCA1 and BARD1, thus subsequently allowing the BARD1-uncoupled BRCA1 to be destabilized by ubiquitin-mediated proteosomal pathway. Moreover, there is an inverse correlation between TACC3 and BRCA1 expression in breast cancer tissues. Overall, our findings provide a new insight into the role of TACC3 in genomic instability and breast tumorigenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.