Abstract

The expression of eubacterial heat shock genes is efficiently controlled at the transcriptional level by both positive and negative mechanisms. Positive control operates by the use of alternative sigma factors that target RNA polymerase to heat shock gene promoters. Alternatively, bacteria apply repressor-dependent mechanisms, in which transcription of heat shock genes is initiated from a classical housekeeping promoter and cis-acting DNA elements are used in concert with a cognate repressor protein to limit transcription under physiological conditions. Eight examples of negative regulation will be presented, among them the widespread CIRCE/HrcA system and the control by HspR in Streptomyces. Both mechanisms are designed to permit simple feedback control at the level of gene expression. Many bacteria have established sophisticated regulatory networks, often combining positive and negative mechanisms, in order to allow fine-tuned heat shock gene expression in an environmentally responsive way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.