Abstract

Natural hyperbolic materials have recently attracted great attention due to their capability of supporting spatial mode frequency much higher than artificial metamaterials and the advantage that they do not require nanofabrication processes. For practical applications, however, hyperbolic bulk materials with lower optical losses in shorter wavelength range should be developed. This work presents the electronic structure and dielectric response of an electride Mg2 N, revealing that this material exhibits hyperbolic responses with low optical loss in the visible and plasmonic responses with high-quality in the near-infrared range. Negative refraction in the red spectral range has been analytically and numerically demonstrated. In particular, nanoantenna structures of Mg2 N generate strong plasmonic resonances in the near-infrared and the intensity enhancement in the gap region is one order of magnitude higher compared with silver nanoantenna due to its much higher quality factor, which can find potential applications for nanoplasmonic purposes such as single molecule detections by surface-enhanced hyper-Raman spectroscopy and nonlinear wavelength generations at the nanoscale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.