Abstract

We investigate the negative refraction effect at a planar interface of a highly absorptive material, where the direct experimental verification is difficult because of the loss-induced skin depth effect. An apparent contradiction occurs when we try to determine the group velocity direction by the method of equifrequency contours (EFCs) in detail. This contradiction forbids any physical solution to be found for negative refraction. We conclude that this paradox is mainly caused by the definition of complex wavevector ~k which is conventionally adopted in the case of complex permittivity. The complex wavevector may result in ambiguously defined optical path, which limits the application of the classical Snell’s law. We propose a bold suggestion that the complex wavevector ~k should be replaced by a complex frequency ~ω. Therefore, the optical path can always be defined as real. The proposed hypothesis is capable of resolving the contradiction about the loss-induced negative refraction, and the obtained theoretical prediction fits well with the reported experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.