Abstract
Light water reactor coolant environments are known to significantly enhance the fatigue crack growth rate of austenitic stainless steels. However, most available data in these high temperature pressurized water environments have been derived using specimens tested at positive load ratios, whilst most plant transients involve significant compressive as well as tensile stresses. The extent to which the compressive loading impacts on the environmental enhancement of fatigue crack growth, and, more importantly, on the processes leading to retardation of those enhanced rates is therefore unclear, potentially leading to excessive conservatism in current assessment methodologies. A test methodology using corner cracked tensile specimens, and based on finite element analysis of the specimens to generate effective stress intensity factors, Keff, for specimens loaded in fully reverse loading has been previously presented. The current paper further develops this approach, enabling it to be utilized to study a range of positive and negative load ratios from R = −2 to R = 0.5 loading, and provides a greater understanding of the development of stress intensity factor within a loading cycle. Test data has been generated in both air and high temperature water environments over a range of loading ratios. Comparison of these data to material specific crack growth data from conventional compact tension specimens and environmental crack growth laws (such as Code Case N-809) enables the impact of crack closure on the effective stress intensity factor to be assessed in both air and water environments. The significance of indicated differences in the apparent level of closure between air and water environments is discussed in the light of accepted growth laws and material specific data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.