Abstract

Membrane distillation (MD) has potential to become a competitive technology for managing hypersaline brine but not until the critical challenge of mineral scaling is addressed. The state-of-the-art approach for mitigating mineral scaling in MD involves the use of superhydrophobic membranes that are difficult to fabricate and are commercially unavailable. This study explores a novel operational strategy, namely, negative pressure direct contact membrane distillation (NP-DCMD) that can minimize mineral scaling with commercially available hydrophobic membranes and at the same time enhance the water vapor flux substantially. By applying a negative gauge pressure on the feed stream, NP-DCMD achieved prolonged resistance to CaSO4 scaling and a dramatic vapor flux enhancement up to 62%. The exceptional scaling resistance is attributable to the formation of a concave liquid-gas under a negative pressure that changes the position of the water-air interface to hinder interfacial nucleation and crystal growth. The substantial flux enhancement is caused by the reduced molecular diffusion resistance within the pores and the enhanced heat transfer kinetics across the boundary layer in NP-DCMD. Achieving substantial performance improvement in both the scaling resistance and vapor flux with commercial membranes, NP-DCMD is a significant innovation with vast potential for practical adoption due to its simplicity and effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.