Abstract
Negative Poisson’s ratio (NPR) in auxetic materials is of great interest due to the typically enhanced mechanical properties, which enables plenty of novel applications. In this paper, by employing first-principles calculations, we report the emergence of NPR in a class of two-dimensional honeycomb structures (graphene, silicene, h-BN, h-GaN, h-SiC, and h-BAs), which are distinct from all other known auxetic materials. They share the same mechanism for the emerged NPR despite the different chemical composition, which lies in the increased bond angle (θ). However, the increase of θ is quite intriguing and anomalous, which cannot be explained in the traditional point of view of the geometry structure and mechanical response, for example, in the framework of classical molecular dynamics simulations based on empirical potential. We attribute the counterintuitive increase of θ and the emerged NPR fundamentally to the strain-modulated electronic orbital coupling and hybridization. It is proposed that the NPR phenomenon can also emerge in other nanostructures or nanomaterials with similar honeycomb structure. The physical origin as revealed in our study deepens the understanding on the NPR and would shed light on future design of modern nanoscale electromechanical devices with special functions based on auxetic nanomaterials and nanostructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: npj Computational Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.