Abstract

• A tridirectional freezing method was proposed to prepare a PI aerogel with an – 0.79 Poisson’s ratio. • The internal structure of herringbone frame endowed the PI aerogel with an ultra-negative Poisson’s ratio. • The shape of the PI aerogels can be restored rapidly after a strong impact of a metal ball. • The PI aerogel showed a striking mechanical stability under cyclic compression at 130 °C or –100 °C ambient temperatures. Although various developed materials with a negative Poisson’s ratio have been inspired by nature, the preparation of a negative-Poisson-ratio polyimide (PI) aerogel has been difficult because of its inherent structural limitations. These limitations have hindered the expansion of potential PI applications. We developed a tridirectional freezing method to prepare a superelastic PI aerogel with an ultranegative Poisson’s ratio. Through dynamic observation, the PI aerogel with a herringbone-tape frame structure exhibited an anisotropic negative Poisson’s ratio along three orthogonal axes. The maximum negative Poisson’s ratio was –0.79. Combined with a finite-element simulation, the formation mechanism of the large ultranegative Poisson’s ratio was investigated. The special internal structure provided the PI aerogels with high fatigue resistance under 10,000-cycle compression at 50% strain, and resilience under the strong impact of a metal ball. The intrinsic thermal stability of the PI provided the aerogel with a striking stability under cyclic compression at 130 °C or –100 °C ambient temperature. Our study provides a practical route for designing superelastic, ultranegative-Poisson-ratio polymer aerogels for applications in strong-impact and high- or low-temperature environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.