Abstract

Waves propagating inwardly to the wave source are called antiwaves which have negative phase velocity. In this paper the phenomenon of negative phase velocity in oscillatory systems is studied on the basis of periodically paced complex Ginzbug-Laundau equation (CGLE). We figure out a clear physical picture on the negative phase velocity of these pacing induced waves. This picture tells us that the competition between the frequency ωout of the pacing induced waves with the natural frequency ω0 of the oscillatory medium is the key point responsible for the emergence of negative phase velocity and the corresponding antiwaves. ωoutω0 > 0 and |ωout| < |ω0| are the criterions for the waves with negative phase velocity. This criterion is general for one and high dimensional CGLE and for general oscillatory models. Our understanding of antiwaves predicts that no antispirals and waves with negative phase velocity can be observed in excitable media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.